The scoring bias in reverse docking and the score normalization strategy to improve success rate of target fishing
نویسندگان
چکیده
Target fishing often relies on the use of reverse docking to identify potential target proteins of ligands from protein database. The limitation of reverse docking is the accuracy of current scoring funtions used to distinguish true target from non-target proteins. Many contemporary scoring functions are designed for the virtual screening of small molecules without special optimization for reverse docking, which would be easily influenced by the properties of protein pockets, resulting in scoring bias to the proteins with certain properties. This bias would cause lots of false positives in reverse docking, interferring the identification of true targets. In this paper, we have conducted a large-scale reverse docking (5000 molecules to 100 proteins) to study the scoring bias in reverse docking by DOCK, Glide, and AutoDock Vina. And we found that there were actually some frequency hits, namely interference proteins in all three docking procedures. After analyzing the differences of pocket properties between these interference proteins and the others, we speculated that the interference proteins have larger contact area (related to the size and shape of protein pockets) with ligands (for all three docking programs) or higher hydrophobicity (for Glide), which could be the causes of scoring bias. Then we applied the score normalization method to eliminate this scoring bias, which was effective to make docking score more balanced between different proteins in the reverse docking of benchmark dataset. Later, the Astex Diver Set was utilized to validate the effect of score normalization on actual cases of reverse docking, showing that the accuracy of target prediction significantly increased by 21.5% in the reverse docking by Glide after score normalization, though there was no obvious change in the reverse docking by DOCK and AutoDock Vina. Our results demonstrate the effectiveness of score normalization to eliminate the scoring bias and improve the accuracy of target prediction in reverse docking. Moreover, the properties of protein pockets causing scoring bias to certain proteins we found here can provide the theory basis to further optimize the scoring functions of docking programs for future research.
منابع مشابه
Large-scale docking approaches to the kinome
Docking nowadays is a widely used tool and has successfully and repeatedly been applied to identify hits with new chemical scaffolds [1]. Despite its successful applications, docking still suffers mainly form its scoring functions, which tend to be optimized for speed to the disadvantage of accuracy. Because of that, docking successfully enriches active molecules compared to inactive ones, howe...
متن کاملDESIGN AND DEVELOPMENT OF THE STRATEGY TO IMPROVE PATIENT SATISFACTION IN A HOSPITAL SETTING
Attempts made in order to improve management tools of performance showing the importance of customer satisfaction in determining the organizations’ success in profitability and business. The main objective of this study was to develop appropriate strategies to improve patient satisfaction in Hospital. The research was a descriptive-practical one. Data was collected through a brainstorming...
متن کاملSemi-quantitative segmental perfusion scoring in myocardial perfusion SPECT: visual vs. automated analysis
Introduction: It is recommended that the physician apply at least a semi-quantitative segmental scoring system in myocardial perfusion SPECT. We aimed to assess the agreement between automated semi-quantitative analysis using QPS (quantitative Perfusion SPECT) software and visual approach for calculation of summed stress score (SSS), summed rest score (SRS) and summed difference score (SDS). ...
متن کاملComparing confidence-based and conventional scoring methods: The case of an English grammar class
This study aimed at investigating the reliability, predictive validity, and self-esteem and gender bias of confidence-based scoring. This is a method of scoring in which the test takers receive a positive or negative point based on their rating of their confidence in an answer. The participants, who were 49 English-major students taking their grammar course, were given 8 multiple-choice tests d...
متن کاملDeep learning is competing random forest in computational docking
Computational docking is the core process of computer-aided drug design; it aims at predicting the best orientation and conformation of a small molecule (drug ligand) when bound to a target large receptor molecule (protein) in order to form a stable complex molecule. The docking quality is typically measured by a scoring function: a mathematical predictive model that produces a score representi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017